
Argonne's
BlueGene/P Supercomputer

Software Overview

Vitali Morozov, Ray Loy, and Kalyan Kumaran

Application Performance and Data Analytics

Argonne Leadership Computing Facility

DOE Leadership Computing Facility Strategy

� DOE SC selected the ORNL, ANL and PNNL team (May 12, 2004) based on a
competitive peer review of 4 LCF proposals
– ORNL will deploy a series of systems based on Cray’s XT3/4 architectures

@ 250TF/s in FY07 and 1000TF/s in FY08/9
– ANL will develop a series of systems based on IBM’s BlueGene @ 100TF/s

in FY07 and 250-500TF/s in FY08/FY09 with IBM Blue Gene/P
– PNNL will contribute software technology

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 2

2

� DOE SC will make these systems available as capability platforms to the broad
national community via competitive awards (e.g. INCITE Allocations)
– Each facility will target ~20 large-scale production applications teams
– Each facility will also support development users

� DOE’s LCFs complement existing and planned production resources at NERSC
– Capability runs will be migrated to the LCFs, improving NERSC throughput
– NERSC will play an important role in training and new user identification

Mission and Vision for the ALCF
Our Mission

Provide the computational science community with a world leading
computing capability dedicated to breakthrough science and
engineering.

Our Vision
A world center for computation driven scientific discovery that has:
• outstandingly talented people,

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 3

3

• outstandingly talented people,
• the best collaborations with computer science and applied

mathematics,
• the most capable and interesting computers and,
• a true spirit of adventure.

See http://www.alcf.anl.gov/ for info and openings

ALCF Timeline
2004

– Formed of the Blue Gene Consortium with IBM
– DOE-SC selected the ORNL, ANL and PNNL team for

Leadership Computing Facility award
2005

– Installed 5 teraflops Blue Gene/L for evaluation
2006

– Began production support of 6 INCITE projects, with BGW

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 4

4

– Began production support of 6 INCITE projects, with BGW
– Continued code development and evaluation
– “Lehman” Peer Review of ALCF campaign plans

2007
– Increased to 9 INCITE projects; continued development projects
– Installed 100 teraflops BlueGene/P (late 2007)

2008
– Began support of 20 INCITE projects on BG/P
– Added 450 teraflops BG/P

• Startup assistance

• User administration assistance

• Job management services

• Technical support (Standard and
Emergency)

ALCF

• ALCF science liaison

• Assistance with proposals, planning,
reporting

• Collaboration within science domains

ALCF Service Offerings

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 5

5

ALCF
Services

• Performance engineering

• Application tuning

• Data analytics

• Data management services

• Workshops & seminars

• Customized training programs

• On-line content & user guides

• Educational and industry outreach
programs

Overview

� Application Developers' view
� Compiling and Building Tools
� I/O
� Scheduling and Running Jobs
� Optimization Techniques
� Performance Tools
� Debugging Tools

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 6

� Debugging Tools

� Login Servers
– compile and submit jobs to ANL's Cobalt scheduler
– surveyor.alcf.anl.gov – 13.9T 1-rack BG/P system - testing and development, in

production mode
– intrepid.alcf.anl.gov – 8-rack BG/P production system - open for all INCITE users
– intrepid.alcf.anl.gov – 32-rack BG/P system - open for Early Science applications

� Service Nodes
– users have restricted access
– jobs are started from here

Configuration Details

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 7

– executable and working directory must be accessible
� I/O Nodes

– 1/64 IO nodes / compute nodes ratio
– each compute node is mapped to particular IO node

� Compute Nodes [1024 nodes per rack]
– users have no access

� Storage Services
– users have no access

BlueGene/P Software Organization

� Front-end nodes (FN) , dedicated for user's to login, compile
programs, submit jobs, query job status, debug applications

� Service nodes (SN) , perform system management services, create
and monitoring processes, initialize and monitor hardware, configure
partitions, control jobs, store statistics

� I/O nodes (IO) , provide a number of OS services, such as files,
sockets, process management, debugging

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 8

� Compute nodes (CN) , run user application, limited OS services

BlueGene/P Programming Environment
� Linux cross-compilation environment

– users login to FEN for compilation, job submission, debugging
� Space sharing

– exactly one job per partition
– smp-mode, one MPI task/node, 4 threads/task, 2GB of RAM
– dual-mode, two MPI tasks/node, 2 threads/task, 1GB of RAM
– vn-mode, 4 single-threaded MPI tasks/node, 512MB of RAM

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 9

� Fortran, C, C++ compilers, MPI, OpenMP
– memory limited to physical memory
– statically and dynamically linked libraries
– restricted set of POSIX routines (no fork, system, …)
– threading support
– MPI based on ANL's mpich2

� SPMD model
– compute nodes run the same executable

BlueGene/P Software Stack

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 10

Application Developer's view
� 4 CPU core per node, 850 MHz, each core can do up t o two

double multiply/add instructions per cycle
– peak performance is 3.4 GFlops/core, 13.6 GFlops/node

� 3D torus network
– point to point MPI_SEND, MPI_RECV
– deterministic protocol for short messages
– deterministic eager protocol for medium messages
– adaptive rendezvouz protocol for long messages

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 11

– adaptive rendezvouz protocol for long messages
� Global tree network

– efficient implementation of all-to-one, one-to-all, and all-to-all
calls

� Global interrupt network
– fast MPI_BARRIER

Overview

� Application Developers' view
� Compiling and Building Tools
� I/O
� Scheduling and Running Jobs
� Optimization Techniques
� Performance Tools
� Debugging Tools

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 12

� Debugging Tools

Building Executable: MPI-Wrapper

� MPI wrappers to IBM compiler set

mpixlc mpixlcxx mpixlf77 mpixlf90 mpixlf2003

� Thread-safe versions of MPI wrappers to IBM compiler set

mpixlc_r mpixlcxx_r mpixlf77_r mpixlf90_r mpixlf2003_r

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 13

� MPI wrappers to GNU compiler set

mpicc mpicxx mpif77

� BlueGene/L users: change your scripts

mpicc.ibm -> mpixlc mpicxx.ibm -> mpicxx mpif77.ibm -> mpixlf77
mpicc.gnu -> mpicc mpicxx.gnu -> mpicxx mpif77.gnu -> mpif77

Sample BlueGene/P makefile

BGPDRIVER = /bgsys/drivers/ppcfloor

CC = $(BGPDRIVER)/comm/bin/mpixlc

CXX = $(BGPDRIVER)/comm/bin/mpixlcxx

FC = $(BGPDRIVER)/comm/bin/mpixlf90

OPTFLAGS = -O3 -qarch=450d -qtune=450 -qhot

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 14

CFLAGS = -qlist -qsource -qreport -g

FFLAGS = -qlist -qsource -qreport -g

myprog: myprog.o

$(FC) $(FFLAGS) -o myprog myprog.o

/usr/bin/bgcc -> /opt/ibmcmp/vacpp/bg/9.0/bin/bgcc

bgxlc, bgxlc_r compile C source file
bgxlc++, bgxlc++_r, bgxlC, bgxlC_r compile C++ source file
bgcc, bgcc_r compile pre-ANSI C non-standard source file
bgc89, bgc89_r compile C89-conformed C source file
bgc99, bgc99_r compile C99-conformed C source file
bgxlf, bgxlf_r, bgf77, bgfort77 compile Fortran 77 source file

Building Executable: Direct Compiler

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 15

bgxlf, bgxlf_r, bgf77, bgfort77 compile Fortran 77 source file
bgxlf90, bgxlf90_r, bgf90 compile Fortran 90 source file
bgxlf95, bgxlf95_r, bgf95 compile Fortran 95 source file
bgxlf2003, bgxlf2003_r, bgf2003 compile Fortran 2003 source file

DRIVER_PATH=/bgsys/drivers/ppcfloor
bgxlC -o MPI_Prog MPI_Prog.C -I$DRIVER_PATH/comm/include/ \

-L$DRIVER_PATH/comm/lib/ -lcxxmpich.cnk -lmpich.cnk -ldcmfcoll.cnk \
-ldcmf.cnk -lpthread -lrt -L$DRIVER_PATH/runtime/SPI -lSPI.cna

OpenMP Implementation

� Shared-memory parallelism is supported on single node
� Interoperability with MPI as

– MPI at outer level, across compute nodes
– OpenMP at inner level, within a compute node

� Thread-safe compiler version should be used
– with any threaded/OMP/SMP applications

� OpenMP 2.5 standard directives are supported:

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 16

� OpenMP 2.5 standard directives are supported:
– parallel, for, parallel for, sections, parallel sections, critical, single
– #pragma omp <rest of pragma> for C/C++
– !$OMP <rest of directive> for Fortran

� Compiler functions
– omp_get_num_procs, omp_get_num_threads

omp_get_thread_num, omp_set_num_threads

Overview

� Application Developers' view
� Compiling and Building Tools
� I/O
� Scheduling and Running Jobs
� Optimization Techniques
� Performance Tools
� Debugging Tools

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 17

� Debugging Tools

Common Approaches to Application I/O
� Single process - root - performs I/O

– trivially simple to implement
– limited bandwidth equal to one client's performance
– insufficient memory and delays in root to keep data

� All processes write to its own file
– no synchronization between tasks
– avoids file system sharing

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 18

– very many files may be created
– difficulty to post-process data
– bottlenecks from I/O hardware

� All processes access single file
– a single file to manage
– post-processing can be avoided
– possible file system sharing and other inefficiencies
– bottlenecks from I/O hardware

Parallel I/O in HPC

� Applications want to achieve scalability, parallelism, high bandwidth,
and usability

� Applications require more software than just a parallel file system
� Multiple layers are provided with distinct roles:

– Parallel file system
• maintains logical space, provides efficient access to data

(PVFS, GPFS)

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 19

(PVFS, GPFS)
– I/O forwarding

• assists with I/O scaling issues, load balance for I/O servers
– Middleware

• organizes access by many processes (MPI-IO)
– High-level I/O library

• maps application abstractions to a structured portable data
format (HDF5, Parallel netCDF)

� Home directory
– GPFS
– /gpfs/home/<username> -> /home/<username>
– extra space in /gpfs1 if needed
– visible from login, compute, I/O, and service nodes
– limited in space
– daily snapshots in ~/.snapshots

I/O on BlueGene/P

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 20

� Data
– PVFS
– /pvfs-surveyor
– visible from login, I/O, and compute nodes
– invisible from the service nodes, so, cannot contain exec files
– scratch data space, no backups

Overview

� Application Developers' view
� Compiling and Building Tools
� I/O
� Scheduling and Running Jobs
� Optimization Techniques
� Performance Tools
� Debugging Tools

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 21

� Debugging Tools

BlueGene/P Partitions

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 22

� Minimal partition size is 64 nodes: due to one I/O 64 compute node ratio
� Larger partitions are configured by combining smaller ones
� If a job is running on a partition, no other job can run on the enclosing larger

partitions
� Not all partitions are available at all times
� bg-listblocks --all lists all defined partitions

Cobalt*: An ANL's Scheduler for HPC

� Research in nature - investigating advanced systems management
for complex cutting-edge architectures

� Open source and uses open source components enabling rapid
experimentation and exploration advanced features

� Focuses on reconfigurable environments for user and growing
hardware

� Fits to both computational needs and computer science research

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 23

� Fits to both computational needs and computer science research
(most resource managers are not system software research
environments)

� Smaller and simpler is better (4K lines of Python code, dynamic
kernel selection, different I/O node kernels, different kernel tuning
parameters, flexibility and configurability, small partition support)

* http://www-unix.mcs.anl.gov/cobalt/index.xml

Resource Manager and Job Scheduler
� Cobalt supports standard commands to manage jobs

qsub: submit a job qstat: query a job status

qdel: delete a job qalter: alter batched job parameters

� Different queues

– short: 24x7x365, <60 minute jobs, higher priority weekdays
8am-2pm CST

– medium: 24x7x365, <3 hour jobs, any size, higher priority weekdays

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 24

2pm-8pm CST

– long: <6 hour jobs, 8pm-8am weekdays and full day weekends

– develop: development jobs of 512 nodes or less

� FIFO based scheduler

– chooses the best fit from the top of the queue

� Maintenance Day: Monday

� Reservations used for special needs

qsub: Submitting a Job
Type qsub

Usage: qsub [-d] [-v] -A <project name> -q <queue> --cwd <working directory>
--env envvar1=value1:envvar2=value2 --kernel <kernel profile>
-K <kernel options> -O <outputprefix> -t time <in minutes>
-e <error file path> -o <output file path> -i <input file path>
-n <number of nodes> -h --proccount <processor count>
--mode <mode> <command> <args>

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 25

-t <time_in_minutes> required runtime
-n <number_on_nodes> number of nodes
--proccount <number_of_cores> number of CPUs
--mode <smp|dual|vn> running mode
--env VAR1=1:VAR2=1 environment variables
<command> <args> command with arguments

Do not give a partition: it is chosen by a scheduler
If fit to a sooner-to-schedule, a queue is adjusted automatically

qsub: Examples of Submitting a Job
� Despite being redundant, we recommend to always specify the number of

nodes, the number of CPUs, and the mode of your run

� qsub -q short -t 10 -n 64 --proccount 64 --mode smp Hello

– submits a job to a short queue

– will run no longer than 10 minutes or when executable stops

– will use smp-mode with 64 nodes, 64 CPUs

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 26

– will use smp-mode with 64 nodes, 64 CPUs

� qsub -q short -t 10 -n 4 --proccount 16 --mode vn -O My_Run My_Exe My_File

– submits a job to a short queue and run no longer than 10 minutes

– will use vn-mode with 4 nodes, 16 CPUs

– will allocate 64-node partition, 60 nodes will stay unused

– will run program My_Exe with argument My_File

– will create My_Run.output as stdout and My_Run.error as stderr files

qsub: A Script to Submit a Typical Job

#!/bin/bash

RUN=<program_executable>

NODES=64

CORES=256

MODE=vn

MAPPING=XYZT

TASK=$RUN-$NODES-$CORES-$MODE

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 27

rm -rf $TASK.error $TASK.output

echo Processors: nodes $NODES, cores $CORES, mode $MODE

qsub -q short -t 0:10:00 -n $NODES --proccount $CORES --mode $MODE -O $TASK \

--env BG_MAPPING=$MAPPING $RUN

qstat -f

touch $TASK.error

tail -f $TASK.error

qstat: Show Status of a Batch Job(s)
� qstat -f <job_id1> <job_id2>

– a full display is produced

JobID JobName User WallTime QueuedTime RunTime Nodes State Location Mode Procs Queue StartTime

==

11543 fl-64-64-smp morozov 00:30:00 00:00:06 00:13:41 64 running ANL-R00-M1-N02-64 SMP 64 short 02/27/08

– job_id can be used to kill the job of alter the job parameters

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 28

– valid status: queued, running

– check the mode of your job

� qstat -Q

– will show all available queues and their limits

– special queues, which we use to handle reservations

qdel: Kill a Job

� qdel <jobid1> <jobid2>

– delete the job from a queue

– terminated a running job

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 29

qalter, qmove: Alter Parameters of a Job
� Allows to alter the parameters of both queued and running jobs

� Very useful for the running jobs, which would unexpectedly coming to exceed their
allocated time

� Type qalter

Usage: qalter [-d] [-v] -A <project name> -t <time in minutes>

-e <error file path> -o <output file path>

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 30

-e <error file path> -o <output file path>

-n <number of nodes> -h --proccount <processor count>

-M <email address> --mode <mode smp/dual/vn> <jobid1> <jobid2>

� Careful: -t <time in minutes>:

– it is NOT the time left for the running jobs!

– it is elapsed time since the beginning of the run, after which Cobalt kills the job

� use qmove to change the queue

Why a job is not running in a queue
� there is a reservation, which interferes with your job

– showres shows all reservations currently in place

� there is no available partitions

– partlist shows all partitions marked as functional

– partlist shows the assignment of each partition to a queue

� wrong queue

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 31

� wrong queue

– the job submitted to a queue, which is restricted to run at this time

� partitions are not freed

– in specific situations, a job quits and does not free a partition => a partition is
treated as busy, but there is no job, which holds this partition

– bg-listblocks --all --long prints full information of all blocks

– the state is identified by a combination of qstat -f, bg-listblocks

Overview

� Application Developers' view
� Compiling and Building Tools
� I/O
� Scheduling and Running Jobs
� Optimization Techniques
� Performance Tools
� Debugging Tools

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 32

� Debugging Tools

Tools: Improved Performance, Profiling, Debugging …

� Most tools are under /soft/apps

� Improved performance with optimized libraries

– BLAS/LAPACK versus LibGOTO/LAPACK

– BlueGene optimized Mass, MassV, ESSL libraries from IBM

� Practical Optimization

– compiler switches

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 33

– compiler switches

– profiling and profiling tools: HPCT, Profiling “-pg”, “-
qdebug=function_trace”, TAU

� Tracing MPI_Barrier/printf/exit/abort standard debugging methods

� GDB / Totalview

– the last choice, requires advanced experience

Optimization Steps w/o Code Changes

� Start from original MPI program, make it run

– The least aggressive compiler options

– Default libraries

� Increase compiler optimization options

� Verify different running modes: smp vs. dual vs. vn

� Use highly optimized libraries (BLAS-LibGOTO, MASSV, ESSL)

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 34

� Use highly optimized libraries (BLAS-LibGOTO, MASSV, ESSL)

� Optimize communication performance: DCMF_EAGER

� Optimize mapping (logical MPI-task to CPU allocation): BG_MAPPING

Optimization Steps with Code Changes
� Use compiler directives

– Alignment, aliasing, loop unrolling, SIMD vectorization

� Profiling (identify the bottleneck)

– Profiling Tools with and without code modification

– Use of hardware counters

– Start code changes only if the bottleneck is concentrated

� Rearranging memory hierarchy

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 35

� Rearranging memory hierarchy

– Ordered memory inquires improve cache reuse (Fortran N-dim arrays)

– Use of contiguous memory blocks allows quadword loads

� Use double-hummer instructions

– Available for Fortran, C, C++ as regular calls

– Register/instructions scheduler is done by compiler

� Last choice: hand-coding assembly

– Assembly generated by a compiler is a great help to understand the code

Memory Hierarchy
� L1 Instruction and L1 Data caches

– 32 KB total size, 32-Byte line size, 64-way associative, round-robin

– -qcache=level=1:type=d:assoc=64:line=32:size=32:\

level=1:type=i=assoc=64:line=32:size=32

� L2 Data cache

– 2KB prefetch buffer, 16 lines, 128-byte a line

– -qcache=level=2:type=c:line=128:size=2

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 36

� L3 Data cache

– 8 MB, 50 cycles latency

– -qcache=level=3:type=c:line=128:size=8192:cost=50

� Memory size

– 2GB DDR-2 at 425 MHz, 100 cycles

� Memory bandwidth

– in L1-cache: ffpdx/stfpdx instructions, 1 quadword load/cycle: 16B*850 /s = 13.6 GB/s

– out of L1-cache: complex memory hierarchy

� Default: -qarch=[450|450d] -qnoautoconfig -qstaticlink -qtune=450

� -O0: no optimization, implies -qstrict_induction (no loop counter optim)

� -O = -O2: balanced optimization, implies -qstrict_induction -qstrict

� -O3 -qstrict: preserves program semantics

� -O3 = -O2 -qfloat=fltint:rsqrt:norngchk -qmaxmem=1 -qhot=level=1:
aggressive but reasonably stable level

IBM XL Compiler General Optimization

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 37

aggressive but reasonably stable level

� -qhot: turns on High-Order loop analysis and Transformation unit

– arraypad, level, simd, vector

� -qreport: produces a listing, shows how code was optimized

� -qipa: interprocedural analysis, use with caution

– level, inline, list

� Architecture flags

– -qalign: Fortran only, specifies the alignment of data

– -qarch=450: generates PPC450 instructions

– -qarch=450d: generates double-hummer instructions

� Increase of optimization aggressiveness

– -O0 -qarch=450d: default optimization level

IBM XL Compiler BG-Specific Optimization

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 38

– -O0 -qarch=450d: default optimization level

– -O3 -qarch=450/450d

– -O4 -qarch=450d -qtune=450

– -O4 = -O3 -qarch -qtune -qcache -qhot -qipa=level=1

– -O5 = -O4 -qipa=level=2

� -qlistopt: generates the listing with all flags used in compilation

#define SIZE 1024

double A[SIZE][SIZE];

double B[SIZE][SIZE];

double C[SIZE][SIZE];

double multiply(void)

{

int i, j, k;

Example program

do {

/* id=3 guarded */ /* ~10 */

/* region = 52 */

/* bump-normalized */

-qreport: shows, how sections
of code have been optimized

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 39

int i, j, k;

for (i = 0; i < SIZE; i ++)

for (j = 0; j < SIZE; j++)

for (k = 0; k < SIZE; k++)

C[i][j]

+= A[i][k] * B[k][j];

return C[SIZE-10][SIZE-10];

}

/* independent */

$.CSE15 = $.ICM0 + $.CIV3;

$.CSE17 = B[$.ICM3][$.CSE15];

$.CSE16 = C[$.ICM6][$.CSE15] + $.ICM7 * $.CSE17;

C[$.ICM6][$.CSE15] = $.CSE16;

$.CSE18 = B[$.ICM8][$.CSE15];

C[$.ICM6][$.CSE15] = $.CSE16 + $.ICM9 * $.CSE18;

$.CSE19 = C[$.ICMA][$.CSE15] + $.ICMB * $.CSE17;

C[$.ICMA][$.CSE15] = $.CSE19;

C[$.ICMA][$.CSE15] = $.CSE19 + $.ICMC * $.CSE18;

$.CIV3 = $.CIV3 + 1;

} while ((unsigned) $.CIV3 < (unsigned) $.ICME);

� -qsource: produces a listing with source section
� -qlist:produces an object listing

Example program

lfpdx fp4,fp36=B[]0(gr21,gr29,0,offset=8)

addi gr21=gr21,32

lfpdx fp3,fp35=B[]0(gr21,gr24,0,offset=-8)

fxcpmadd fp1,fp33=fp7,fp39,fp0,fp32,fp10,fp10,fcr

fxcpmadd fp6,fp38=fp9,fp41,fp0,fp32,fp11,fp11,fcr

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 40

fxcpmadd fp6,fp38=fp9,fp41,fp0,fp32,fp11,fp11,fcr

fxcpmadd fp0,fp32=fp5,fp37,fp4,fp36,fp12,fp12,fcr

fxcpmadd fp4,fp36=fp2,fp34,fp4,fp36,fp13,fp13,fcr

fxcpmadd fp2,fp34=fp1,fp33,fp3,fp35,fp12,fp12,fcr

fxcpmadd fp1,fp33=fp6,fp38,fp3,fp35,fp13,fp13,fcr

stfpdx C[]0(gr22,gr30,0,offset=-8184)=fp0,fp32

stfpdx C[]0(gr22,gr29,0,offset=8)=fp4,fp36

� SMP mode

– qsub --mode smp

– Single MPI task on CPU0 / 2 GB RAM

� Dual mode

– qsub --mode dual

Runtime Mode

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 41

– Two MPI tasks on a node / 1GB RAM each

� Virtual Node mode

– qsub --mode vn

– Four MPI tasks on a node / 512 MB RAM each

� OpenMP is supported

– NPTL pthreads implementation in glibc requires NO modifications

� Compute Note Kernel supports

– execution of one quad-threaded process

(each of the CPUs is assigned to each of maximum 4 threads)

Threading Support

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 42

(each of the CPUs is assigned to each of maximum 4 threads)

– execution of two two-threaded processes

– execution of four single-threaded processes

– proper mode should be specified for qsub

� Default XYZT mapping

– (XYZ) are torus coordinates, T is a CPU number

– X-coordinate is increasing first, then Y, then Z

– All XYZT permutations are possible

� qsub --env BG_MAPPING=TXYZ --mode vn …

– This puts MPI task 0,1,2,3 to Node 0 CPU0, CPU1, CPU2, CPU3; MPI tasks
4,5,6, and 7 to Node2 CPU0,CPU1,CPU2,CPU3

MPI Mapping

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 43

4,5,6, and 7 to Node2 CPU0,CPU1,CPU2,CPU3

– Typically, default XYZT is less efficient than TXYZ mapping

� qsub --BG_MAPPING=<FileName> --mode smp …

– use high-performance toolkits to determine communication pattern

– optimize mapping by custom mapfile

– mapfile: each line contains 4 coordinates to place the task, first line for task
0, second line for task 1…

– avoid conflict in mapfiles (no verification)

� BG-optimized BLAS Level 1,2,3 library from Kazushige Goto, U. of Texas

� IBM ESSL library: BLAS1, 2, 3 in /soft/apps/ESSL

� Generic versions of BLAS/LAPACK/FFTW

-O0 102.82 s 20.88 MFlop/s

-O2 70.86 s 30.31 MFlop/s

Optimized libraries

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 44

-O2 70.86 s 30.31 MFlop/s

-O3 3.471 s 618.52 MFlop/s

-O4 7.921 s 271.10 MFlop/s

-O5 7.919 s 271.12 MFlop/s

ESSL 0.836 s 2569.6 MFlop/s 75.76 % of peak

GOTO 0.828 s 2593.0 MFlop/s 76.26 % of peak

Communication Operations

�Best if no use of complex derived data
�For performance reason, it is advisable do not overlap

p2p and collective operations
�P2P operations a figure from Application Development

– Routing messages statically or dynamically
– Control routing by DCMF_EAGER variable

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 45

– Control routing by DCMF_EAGER variable
(changes the rendezvous threshold)

�Collective operations: latency and bandwidth from
Application Development
– Collective operations are more efficient than p2p, and

should be used if possible

Point-to-point Operations
� Intel MPI PingPong benchmark: BG/L co-mode vs. BG/P smp-mode

� Nearest neighbor communication

� The break line is due to switching from short to eager

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 46

IBM System Blue Gene Solution: Blue Gene/P Application Development RedBook

BlueGene/P Collective Operations

� Intel MPI Collective Benchmark

� Preferred over P2P due to lower overhead, independent on mapping

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 47

IBM System Blue Gene Solution: Blue Gene/P Application Development RedBook

Personality* of BlueGene/P
#include <common/bgp_personality.h>

#include <common/bgp_personality_inlines.h>

_BGP_Personality_t p;

Kernel_GetPersonality(&p, sizeof(p));

p.DDR_Config.DDRSizeMB; /* memory size */

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 48

p.DDR_Config.DDRSizeMB; /* memory size */

p.Kernel_Config.ProcessConfig; /* running mode */

p.Network_Config.Xnodes; /* torus dimensions */

p.Network_Config.Ynodes;

p.Network_Config.Znodes;

mpixlc_r -I/bgsys/drivers/ppcfloor/arch/include …

Overview

� Application Developers' view
� Compiling and Building Tools
� I/O
� Scheduling and Running Jobs
� Optimization Techniques
� Performance Tools
� Debugging Tools

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 49

� Debugging Tools

� Compiler options for profile information

– no instrumentation, simple to use

– -pg

– gprof <exe> gmon.out.0

� TAU - Tuning and Analysis Utilities

– /soft/apps/tau/tau-latest

– requires additional instrumentation

Performance Toolkits

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 50

– requires additional instrumentation

– extensive visualization capabilities

– can be combined with PAPI-3.9.0 hardware counters*

� HPCT - IBM High-Performance Computing Toolkit

– /soft/apps/hpct_bgp

– New product, not much feedback is available, esp. for large projects

– MPI profiling and tracing tool, CPU Profiling, Hardware Counter Performance
Monitoring, I/O Performance

� Profiling is collecting and arranging statistics of running program

� Simple to use: does NOT require instrumentation of sources

� Use -p option at compile AND link time

� Use -g option, but remember that it removes automatic inlining

� Run program: it will produce gmon.out.N binary files, one for each MPI task

� Convert a binary to readable text format:

Use of gprof Tool with Compiler Options

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 51

� Convert a binary to readable text format:

gprof <executable> gmon.out.0

� Alternatively, use Xprofiler graphical tool (part of HPCT)

� http://www.gnu.org/software/binutils/manual/gprof-2.9.1/gprof.html

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name

32.49 24.33 24.33 50012 0.00 0.00 __mhd_m_NMOD_mhd_timestep

20.45 39.64 15.31 52712648 0.00 0.00 __thermom_NMOD_roe_peta

7.09 44.95 5.31 DCMF::hwBarrier::poll()

7.08 50.25 5.30 DMA_RecFifoSimplePollNormalFifoById

4.89 53.91 3.66 12052892 0.00 0.00 __thermom_NMOD_roe_ac

3.02 56.18 2.27
DCMF::Queueing::Lockbox::LockboxMessage::advance()

2.74 58.23 2.05 50012 0.00 0.00 __mpi_m_NMOD_exchange2lines

2.27 59.93 1.70

Flat profile

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 52

DCMF::Protocol::MultiSend::TreeAllreduceRecvPostMessage::advanceDeep(DCMF::Queueing::Tree::TreeM
sgContext)

1.80 61.28 1.35 DCMF::DMA::Device::advance()

1.55 62.44 1.16 50012 0.00 0.00 __eleccircuitm_NMOD_current

1.32 63.42 0.99 DCMF::Queueing::Lockbox::Device::advance()

1.23 64.34 0.92 DCMF_Messager_advance

0.05 73.54 0.04 DCMF_Send

0.05 73.58 0.04 MPIDI_BG2S_RecvCB

0.05 73.62 0.04 DCMF::DMA::Device::processAdvanceQueue()

� Search for functions with larger time usage

� Search for functions with larger number of calls

HPCT GUI Tool - Xprofiler

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 53

TAU toolkit*
� Tuning and Analysis Utilities (TAU): A toolkit for performance evaluation,

such as profiling, and tracing, and analysis of parallel programs

� Profiling

– summary statistics of performance metrics

– performance behavior of functions, blocks, calls

– identifies bottlenecks and hot spots

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 54

– implemented through sampling and/or instrumentation

� Tracing

– when and where significant points (events) took place

– saves information about each events

– used to reconstruct dynamics of the program

– requires code instrumentation

* Performance Research Lab, University of Oregon

Steps of TAU Performance Evaluation
�Collecting basic routine-level timing profile to

determine where most time is being spent

�Collecting routine-level hardware counter data to
determine types of performance problems

�Collecting callpath profiles to determine sequence

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 55

�Collecting callpath profiles to determine sequence
of events causing performance problems

�Conducting fine-grained profiling and tracing to
pinpoint performance bottlenecks (hardware
counters, communications,…)

� Instrument the source code

TAU includes tau_XXX scripts for automatic instrumentation:

% mpicxx -o computePi computePi.cpp

changed to

% export TAU_MAKEFILE=/soft/apps/tau/tau_latest/bgp/lib/
Makefile.tau-multiplecounters-mpi-papi-pdt

Using TAU: Basic steps

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 56

Makefile.tau-multiplecounters-mpi-papi-pdt

% tau_cxx.sh -o computePi computePi.cpp

� Execute MPI program as usual

� Obtain profile.NNN files, one for each MPI task

� Post-process profiles by console-based pprof utility

� Post-process profiles with GUI paraprof utility

� Initialization and runtime configuration

TAU_PROFILE_INIT, TAU_PROFILE_SET_NODE

� Register a function to profile

TAU_PROFILE

� Start/stop profiling

TAU_START, TAU_STOP

Using TAU: Manual Instrumentation

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 57

TAU_START, TAU_STOP

� User-defined timing

TAU_PROFILE_TIMER, TAU_PROFILE_START, TAU_PROFILE_STOP

� User-defined events

TAU_REGISTER_EVENT, TAU_PROFILE_STMT

� Heap memory tracking

TAU_TRACK_MEMORY, TAU_SET_INTERRUPT_INTERVAL

Specific of TAU on BG/P

�Front end nodes are ppc64

�Back end nodes are bgp

�TAU interactive tools are built for ppc64 or Java

�Back end tools (measurement) are built for bgp

�Available configurations

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 58

�Available configurations

– TAU with PDT - profiling and tracing of functions
– MPI - profiling and tracing only communication routines
– pthreads - profiling threads
– callpath - constructing functions call path
– hardware counters - including PAPI-based counters support

pprof output

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 59

TAU GUI Tool - Paraprof

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 60

IBM HPCT Tool for MPI/CPU/IO Profile

� IBM High Performance Computing Toolkit - HPCT

– Tools to visualize and analyze your performance data

– Xprofiler and HPCT GUI instructions

– Tools to optimize your application's performance

� MPI Performance: MPI Profiling and Tracing (mpitrace)

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 61

� MPI Performance: MPI Profiling and Tracing (mpitrace)

� CPU Performance: -pg and gmon.out.X, XProfiler, HPM

� Hardware Counter Performance Monitoring: HPM

� I/O Performance: I/O Profiling

� Threading Performance: OpenMP profiling

� Visualization and analysis: PeekPerf

HPCT: Message Passing Performance

� Implemented as PMPI wrappers around MPI functions

� No changes in source code

� Compile with -g, link with libmpitrace.a

� Captures MPI calls with source code traceback

� Does not synchronize MPI calls

� Generate XML output with PeekPerf

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 62

� Generate XML output with PeekPerf

HPCT: Message Passing Performance

MPI Function #Calls Message Size #Bytes Walltime

MPI_Comm_size 1 (1) 0 ... 4 0 1E-07

MPI_Comm_rank 1 (1) 0 ... 4 0 1E-07

MPI_Isend 2 (1) 0 ... 4 3 0.000006

MPI_Isend 2 (2) 5 ... 16 12 1.4E-06

MPI_Isend 2 (3) 17 ... 64 48 1.3E-06

MPI Function #Calls Message Size #Bytes Walltime

MPI_Irecv 2 (1) 0 ... 4 3 4.7E-06

MPI_Irecv 2 (2) 5 ... 16 12 1.4E-06

MPI_Irecv 2 (3) 17 ... 64 48 1.5E-06

MPI_Irecv 2 (4) 65 ... 256 192 2.4E-06

MPI_Irecv 2 (5) 257 ... 1K 768 2.6E-06

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 63

MPI_Isend 2 (3) 17 ... 64 48 1.3E-06

MPI_Isend 2 (4) 65 ... 256 192 1.3E-06

MPI_Isend 2 (5) 257 ... 1K 768 1.3E-06

MPI_Isend 2 (6) 1K ... 4K 3072 1.3E-06

MPI_Isend 2 (7) 4K ... 16K 12288 1.3E-06

MPI_Isend 2 (8) 16K ... 64K 49152 1.3E-06

MPI_Isend 2 (9) 64K ... 256K 196608 1.7E-06

MPI_Isend 2 (A) 256K ... 1M 786432 1.7E-06

MPI_Isend 1 (B) 1M ... 4M 1048576 9E-07

MPI_Irecv 2 (6) 1K ... 4K 3072 3.4E-06

MPI_Irecv 2 (7) 4K ... 16K 12288 7.1E-06

MPI_Irecv 2 (8) 16K ... 64K 49152 2.23E-05

MPI_Irecv 2 (9) 64K ... 256K 196608 9.98E-05

MPI_Irecv 2 (A) 256K ... 1M 786432 0.00039

MPI_Irecv 1 (B) 1M ... 4M 1048576 0.000517

MPI_Waitall 21 (1) 0 ... 4 0 1.98E-05

MPI_Barrier 5 (1) 0 ... 4 0 7.8E-06

Example of using HPCT Tool

� Instrument the program
� See listing
� Use hardware counters
� Change optimization options

#include "libhpm.h"

hpmInit(taskID, "hpct-hcpm");

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 64

hpmInit(taskID, "hpct-hcpm");
hpmStart(1, "multiply-regular");
for (i = 0; i < SIZE; i ++)

for (j = 0; j < SIZE; j++)
for (k = 0; k < SIZE; k++)

C[i][j] += A[i][k] * B[k][j];
hpmStop(1);
hpmTerminate(taskID);

HPCT_DIR=/soft/apps/hpct_bgp
mpixlcxx_r -I$HPCT_DIR/include -o Hello Hello.cxx -L$HPCT_DIR/lib
-lhpm -llicense

HPCT GUI Tool - Peekperf

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 65

HPCT GUI Tool - XProfiler

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 66

Overview

� Application Developers' view
� Compiling and Building Tools
� I/O
� Scheduling and Running Jobs
� Optimization Techniques
� Performance Tools
� Debugging Tools

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 67

� Debugging Tools

Debugging on BlueGene/P

�GDB and Totalview (Totalview technologies) are available

� isub launcher should be used:

– isub -t 30 -n 64 -A myproject -q short

– waiting the job to start … prompt

gdb <mpi_args>

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 68

gdb <mpi_args>

totalview <tv_args> mpirun -a <mpi_args>

quit

isub and mpirun arguments

� isub

– Require: -q queue -A Project -t time

– Optional: -K kernel

�mpirun

– Require: -np CPU (not --proccount)

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 69

– Require: -mode mode (not --mode)

– Recommended: -verbose

– Recommended: -nofree (experts only)

� example launch

gdb -np 64 -mode smp -verbose 2 program

>

gdb server

� [Partition boots]

� [wait for prompt]

�Type one of the following

– <rank> to get a connection to that rank

– dump_proctable to get all rank IP:PORT info

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 70

� [Start client in other windows]

�Hit <return> to start the program

gdb client

� [gdb server already started]

� [dump_proctable on server gives IP:PORT]

�Attach one client to each interesting task
/bgsys/drivers/ppcfloor/gnu-linux/bin/gdb

target remote <IP:PORT>

[client waits for server to become active]

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 71

[client waits for server to become active]

� [return to server and hit <enter>]

� [clients will give a prompt]

gdb commands

� break <nnn>

– info break

– delete

� next

� print

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 72

�where

� continue

more info: http://www.gnu.org/software/gdb/documentation/

Totalview

�C, C++, Fortran

�wide compiler/platform
support

�multi-threaded debugging

� parallel debugging

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 73

� parallel debugging

� remote debugging

�memory debugging

�Extensive GUI

�CLI for scripting and batch

Starting Totalview

�Use ssh -X to login with X11 tunnel created

�Add +totalview to ~.softenvrc file

�To submit a job for debugging
isub <qsub_args> --run totalview <tv_args> mpirun -a <mpi_args>

e.g.

isub -t 30 -n 64 -A Project --run totalview mpirun -a np 64 program

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 74

isub -t 30 -n 64 -A Project --run totalview mpirun -a np 64 program

�Totalview will start when job is allocated

�Typically just hit "Go" button

�Wait while partition boot

�All processes are halted after execution single instruction

�Set necessary breakpoints and continue, inspect processes
when needed

Specific of Totalview on BG/P

�Dynamic and multi-threaded applications are in beta stage

�Memory debugging is at initial stage

�BG/P message queue are unavailable

�Core files are unsupported

– BG/P uses Lightweight Core File (LCF) format

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 75

– BG/P uses Lightweight Core File (LCF) format

– Use bgp_stack, coreprocessor.pl

Tuning code for BlueGene/P

� Structuring data in adjacent pairs

– Allows to use quadword load/store operations

� Using vectorizable blocks

– Organize the code sequences with single entry point

– Minimize branching for special cases (exceptions, NaN values)

– Minimize dependencies between blocks

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 76

– Minimize dependencies between blocks

� Minimize the usage of C/C++ pointers, guarantee disjoint references

� Use inline (with caution)

– to remove overhead with brunching

– to enlarge the vectorizable blocks

� Turn off range checking -qfloat=norngchk (with caution)

Resources

� ALCF Resource page
http://www.alcf.anl.gov/support/usingALCF/index.php

� Getting Started
http://www.alcf.anl.gov/support/gettingstarted/index.php

� IBM RedBooks:

Argonne National
Laboratory Argonne's Blue Gene/P Supercomputer: Software Overv iew 77

� IBM RedBooks:
Compiler User Guides, Application Development Manuals
http://www.redbooks.ibm.com/redbooks.nsf/redbooks/

